Función cuadrática

Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

f(x) = ax² + bx + c

Representación gráfica de la parábola

Podemos construir una parábola a partir de estos puntos:

1. Vértice

Por el vértice pasa el eje de simetría de la parábola.

La ecuación del eje de simetría es:

2. Puntos de corte con el eje OX

En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:

ax² + bx + c = 0

Resolviendo la ecuación podemos obtener:

Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0

Un punto de corte: (x1, 0) si b² − 4ac = 0

Ningún punto de corte si b² − 4ac < 0

3. Punto de corte con el eje OY

En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:

f(0) = a · 0² + b · 0 + c = c        (0, c)

Ejemplo

Representar la función f(x) = x² − 4x + 3.

1. Vértice

xv = − (−4)/2 = 2     yv= 2² − 4 · 2 + 3 = −1       

 V(2, −1)

2. Puntos de corte con el eje OX

x² − 4x + 3 = 0

       

(3, 0)      (1, 0)

3. Punto de corte con el eje OY

(0, 3)

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) (20 votes, average: 3,20 out of 5)
Cargando…

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗

¿Te ha gustado
este material?

¡Bravo!

¡Descárgatelo en formato PDF poniendo tu correo electrónico!

{{ downloadEmailSaved }}

Tu correo electrónico no es válido