Función cuadrática

 

Las funciones polinómicas son aquellas constituidas por un polinomio, un ejemplo de estas es la función cuadrática o de segundo grado, representada con una gráfica de parábola y la siguiente ecuación:

 

f(x)=ax^{2}+bx+c

 

Representación gráfica de la parábola

Para construir una gráfica de parábola se requiere conocer los siguientes elementos:

 

Vértice

 

Por el vértice pasa el eje de simetría de la parábola, es decir, cuando el coeficiente del término x^{2} es positivo el vértice será el punto más bajo de la gráfica y las fórmulas para encontrarlo son las siguiente:

 

x_{v}=-\cfrac{b}{2a}\; \; \; \; \; \; \; \; \; \; y_{v}=f\left ( -\cfrac{b}{2a} \right )

 

V\left ( -\cfrac{b}{2a},f\left ( -\cfrac{b}{2a} \right ) \right )

 

Así mismo, la ecuación del eje de simetría es:

 

x=-\cfrac{b}{2a}

 

Puntos de corte con el eje X

 

Para encontrar el valor de x cuando f(x)=0, la segunda coordenada debe igualarse a cero, por lo que tendremos que resolver la siguiente igualdad:

 

ax^{2}+bx+c=0

 

Al resolver la ecuación anterior los resultados pueden ser:

    1. Dos puntos de corte: (x_{1},0) y (x_{2},0) esto sucede si b^{2}-4ac> 0
    2. Un punto de corte: (x_{1},0) esto sucede si b^{2}-4ac= 0
    3. Ningún punto de corte si b^{2}-4ac< 0

 

Punto de corte con el eje Y

 

Para encontrar la intersección con el eje Y la primera coordenada debe igualarse a cero, x=0, por lo que tendremos:

 

f(0)=a\cdot 0^{2}+b\cdot 0+c=c\; \; \; \Rightarrow \; \; \; (0,c)

 

Ejemplo

 

Para representar la función f(x)=x^{2}-4x+3 es necesario encontrar los siguientes elementos que componen la parábola:

 

Vértice

 

Aplicamos las formulas descritas en el apartado anterior para encontrar la coordenadas del vértice que son:

V\left ( -\cfrac{b}{2a},f\left ( -\cfrac{b}{2a} \right ) \right )

x_{v}=-\cfrac{-4}{2}=2\; \; \; \; \; y_{v}=2^{2}-4\cdot 2+3=-1

 

Entonces las coordenadas del vértice son: V(2,-1)

 

Puntos de corte con el eje X

 

Para encontrar el punto o los puntos de corte con el eje X, igualamos la función con 0, tal como se indicó anteriormente:

x^{2}-4x+3=0

 

Para resolver la ecuación, utilizamos la fórmula general para ecuaciones de segundo grado:

 

x=\cfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}

 

x=\cfrac{4\pm \sqrt{16-12}}{2}=\cfrac{4\pm 2}{2}\; \; \; \; \; \Rightarrow \; \; \; \; \; \begin{matrix} x_{1}=3\\ x_{2}=1 \end{matrix}

 

 

En este caso hemos encontrado dos puntos de corte los cuales son: (3,0) y (1,0)

Punto de corte con el eje Y

 

Para encontrar el punto de corte con Y basta con conocer el valor de la constante c que en este caso es 3 y las coordenadas son: (0,3).

 

Grafica de una funcion cuadratica

 

 

Gráfica de la función cuadrática

 

Partimos de y=x^{2}

 

\begin{matrix} \hline x & & y=x^{2 }\\ \hline -2 & & 4 \\ -1 & & 1 \\ 0 & & 0 \\ 1 & & 1 \\ 2 & & 4 \\ \hline \end{matrix}

 

Grafica de la funcion x al cuadrado

 

Traslación vertical

 

Si nuestra función es y=x^{2}+k

Donde:

  • k>0, entonces y=x^{2} se desplaza hacia arriba k unidades.
  • k<0, entonces y=x^{2} se desplaza hacia abajo k unidades.

En este caso el vértice de la parábola es: (0.k).

Y el eje de simetría x=0.

 

Desplazamiento vertical de la función x al cuadrado

 

Traslación horizontal

 

Para la ecuación y=(x+h)^{2}

Donde:

  • Si, h>0, entonces y=x^{2} se desplaza hacia la izquierda h unidades.
  • Si, h<0, entonces y=x^{2} se desplaza hacia la derecha h unidades.

En este ejercicio el vértice de la parábola es: (-h,0).

Y el eje de simetría es x=-h.

 

Desplazamiendo horizontal de la funcion x al cuadrado

 

Traslación oblicua

 

Por último en la siguiente expresión y=(x+h)^{2}+k, el vértice de la parábola es: (-h,k).

Y el eje de simetría es x=-h.

 

 

¿Necesitas un profesor de Matemáticas?

¿Te ha gustado el artículo?

¿Ninguna información? ¿En serio?Ok, intentaremos hacerlo mejor la próxima vezAprobado por los pelos. ¿Puedes hacerlo mejor?Gracias. Haznos cualquier pregunta en los comentar¡Un placer poder ayudarte! :) 3,80/5 - 85 vote(s)
Cargando...

Marta

➗ Licenciada en Químicas da clase de Matemáticas, Física y Química -> Comparto aquí mi pasión por las matemáticas ➗